By: Team T09-3
Since: Sep 2018
Licence: NUS
- 1. Setting up
- 2. Design
- 3. Implementation
- 4. Documentation
- 5. Testing
- 6. Dev Ops
- Appendix A: Suggested Programming Tasks to Get Started
- Appendix B: Product Scope
- Appendix C: User Stories
- Appendix D: Use Cases
- Appendix E: Non Functional Requirements
- Appendix F: Glossary
- Appendix G: Product Survey
- Appendix H: Instructions for Manual Testing
1. Setting up
1.1. Prerequisites
-
JDK
9
or laterJDK 10
on Windows will fail to run tests in headless mode due to a JavaFX bug. Windows developers are highly recommended to use JDK9
. -
IntelliJ IDE
IntelliJ by default has Gradle and JavaFx plugins installed.
Do not disable them. If you have disabled them, go toFile
>Settings
>Plugins
to re-enable them.
1.2. Setting up the project in your computer
-
Fork this repo, and clone the fork to your computer
-
Open IntelliJ (if you are not in the welcome screen, click
File
>Close Project
to close the existing project dialog first) -
Set up the correct JDK version for Gradle
-
Click
Configure
>Project Defaults
>Project Structure
-
Click
New…
and find the directory of the JDK
-
-
Click
Import Project
-
Locate the
build.gradle
file and select it. ClickOK
-
Click
Open as Project
-
Click
OK
to accept the default settings -
Open a console and run the command
gradlew processResources
(Mac/Linux:./gradlew processResources
). It should finish with theBUILD SUCCESSFUL
message.
This will generate all resources required by the application and tests. -
Open
XmlAdaptedPerson.java
andMainWindow.java
and check for any code errors-
Due to an ongoing issue with some of the newer versions of IntelliJ, code errors may be detected even if the project can be built and run successfully
-
To resolve this, place your cursor over any of the code section highlighted in red. Press ALT+ENTER, and select
Add '--add-modules=…' to module compiler options
for each error
-
-
Repeat this for the test folder as well (e.g. check
XmlUtilTest.java
andHelpWindowTest.java
for code errors, and if so, resolve it the same way)
1.3. Verifying the setup
-
Run the
seedu.address.MainApp
and try a few commands -
Run the tests to ensure they all pass.
1.4. Configurations to do before writing code
1.4.1. Configuring the coding style
This project follows oss-generic coding standards. IntelliJ’s default style is mostly compliant with ours but it uses a different import order from ours. To rectify,
-
Go to
File
>Settings…
(Windows/Linux), orIntelliJ IDEA
>Preferences…
(macOS) -
Select
Editor
>Code Style
>Java
-
Click on the
Imports
tab to set the order-
For
Class count to use import with '*'
andNames count to use static import with '*'
: Set to999
to prevent IntelliJ from contracting the import statements -
For
Import Layout
: The order isimport static all other imports
,import java.*
,import javax.*
,import org.*
,import com.*
,import all other imports
. Add a<blank line>
between eachimport
-
Optionally, you can follow the UsingCheckstyle.adoc document to configure Intellij to check style-compliance as you write code.
1.4.2. Updating documentation to match your fork
After forking the repo, the documentation will still have the SE-EDU branding and refer to the se-edu/addressbook-level4
repo.
If you plan to develop this fork as a separate product (i.e. instead of contributing to se-edu/addressbook-level4
), you should do the following:
-
Configure the site-wide documentation settings in
build.gradle
, such as thesite-name
, to suit your own project. -
Replace the URL in the attribute
repoURL
inDeveloperGuide.adoc
andUserGuide.adoc
with the URL of your fork.
1.4.3. Setting up CI
Set up Travis to perform Continuous Integration (CI) for your fork. See UsingTravis.adoc to learn how to set it up.
After setting up Travis, you can optionally set up coverage reporting for your team fork (see UsingCoveralls.adoc).
Coverage reporting could be useful for a team repository that hosts the final version but it is not that useful for your personal fork. |
Optionally, you can set up AppVeyor as a second CI (see UsingAppVeyor.adoc).
Having both Travis and AppVeyor ensures your App works on both Unix-based platforms and Windows-based platforms (Travis is Unix-based and AppVeyor is Windows-based) |
1.4.4. Getting started with coding
When you are ready to start coding,
-
Get some sense of the overall design by reading Section 2.1, “Architecture”.
-
Take a look at Appendix A, Suggested Programming Tasks to Get Started.image::Architecture.png[width="600"]
2. Design
2.1. Architecture
The Architecture Diagram given above explains the high-level design of the App. Given below is a quick overview of each component.
The .pptx files used to create diagrams in this document can be found in the diagrams folder. To update a diagram, modify the diagram in the pptx file, select the objects of the diagram, and choose Save as picture .
|
Main
has only one class called MainApp
. It is responsible for,
-
At app launch: Initializes the components in the correct sequence, and connects them up with each other.
-
At shut down: Shuts down the components and invokes cleanup method where necessary.
Commons
represents a collection of classes used by multiple other components. Two of those classes play important roles at the architecture level.
-
EventsCenter
: This class (written using Google’s Event Bus library) is used by components to communicate with other components using events (i.e. a form of Event Driven design) -
LogsCenter
: Used by many classes to write log messages to the App’s log file.
The rest of the App consists of four components.
Each of the four components
-
Defines its API in an
interface
with the same name as the Component. -
Exposes its functionality using a
{Component Name}Manager
class.
For example, the Logic
component (see the class diagram given below) defines it’s API in the Logic.java
interface and exposes its functionality using the LogicManager.java
class.
Events-Driven nature of the design
The Sequence Diagram below shows how the components interact for the scenario where the user issues the command delete 1
.
delete 1
command (part 1)
Note how the Model simply raises a AddressBookChangedEvent when the Address Book data are changed, instead of asking the Storage to save the updates to the hard disk.
|
The diagram below shows how the EventsCenter
reacts to that event, which eventually results in the updates being saved to the hard disk and the status bar of the UI being updated to reflect the 'Last Updated' time.
delete 1
command (part 2)
Note how the event is propagated through the EventsCenter to the Storage and UI without Model having to be coupled to either of them. This is an example of how this Event Driven approach helps us reduce direct coupling between components.
|
The sections below give more details of each component.
2.2. UI component
API : Ui.java
The UI consists of a MainWindow
that is made up of parts e.g.CommandBox
, ResultDisplay
, PersonListPanel
, LedgerListPanel
, EventListPanel
, ItemListPanel
, StatusBarFooter
, BrowserPanel
etc. All these, including the MainWindow
, inherit from the abstract UiPart
class.
The UI
component uses JavaFx UI framework. The layout of these UI parts are defined in matching .fxml
files that are in the src/main/resources/view
folder. For example, the layout of the MainWindow
is specified in MainWindow.fxml
The UI
component,
-
Executes user commands using the
Logic
component. -
Binds itself to some data in the
Model
so that the UI can auto-update when data in theModel
change. -
Responds to events raised from various parts of the App and updates the UI accordingly.
2.3. Logic component
API :
Logic.java
-
Logic
uses theAddressBookParser
class to parse the user command. -
This results in a
Command
object which is executed by theLogicManager
. -
The command execution can affect the
Model
(e.g. adding a person) and/or raise events. -
The result of the command execution is encapsulated as a
CommandResult
object which is passed back to theUi
.
Given below is the Sequence Diagram for interactions within the Logic
component for the execute("delete 1")
API call.
delete 1
Command2.4. Model component
API : Model.java
The Model
,
-
stores a
UserPref
object that represents the user’s preferences. -
stores the Address Book data.
-
exposes an unmodifiable
ObservableList<Person>
that can be 'observed' e.g. the UI can be bound to this list so that the UI automatically updates when the data in the list change. -
does not depend on any of the other three components.
As a more OOP model, we can store a Tag list in Address Book , which Person can reference. This would allow Address Book to only require one Tag object per unique Tag , instead of each Person needing their own Tag object. An example of how such a model may look like is given below. |
2.5. Storage component
API : Storage.java
The Storage
component,
-
can save
UserPref
objects in json format and read it back. -
can save the Address Book data in xml format and read it back.
2.6. Common classes
Classes used by multiple components are in the seedu.addressbook.commons
package.
3. Implementation
This section describes some noteworthy details on how certain features are implemented.
3.1. Undo/Redo feature
3.1.1. Current Implementation
The undo/redo mechanism is facilitated by VersionedAddressBook
.
It extends AddressBook
with an undo/redo history, stored internally as an addressBookStateList
and currentStatePointer
.
Additionally, it implements the following operations:
-
VersionedAddressBook#commit()
— Saves the current address book state in its history. -
VersionedAddressBook#undo()
— Restores the previous address book state from its history. -
VersionedAddressBook#redo()
— Restores a previously undone address book state from its history.
These operations are exposed in the Model
interface as Model#commitAddressBook()
, Model#undoAddressBook()
and Model#redoAddressBook()
respectively.
Given below is an example usage scenario and how the undo/redo mechanism behaves at each step.
Step 1. The user launches the application for the first time. The VersionedAddressBook
will be initialized with the initial address book state, and the currentStatePointer
pointing to that single address book state.
Step 2. The user executes delete 5
command to delete the 5th person in the address book. The delete
command calls Model#commitAddressBook()
, causing the modified state of the address book after the delete 5
command executes to be saved in the addressBookStateList
, and the currentStatePointer
is shifted to the newly inserted address book state.
Step 3. The user executes add n/David …
to add a new person. The add
command also calls Model#commitAddressBook()
, causing another modified address book state to be saved into the addressBookStateList
.
If a command fails its execution, it will not call Model#commitAddressBook() , so the address book state will not be saved into the addressBookStateList .
|
Step 4. The user now decides that adding the person was a mistake, and decides to undo that action by executing the undo
command. The undo
command will call Model#undoAddressBook()
, which will shift the currentStatePointer
once to the left, pointing it to the previous address book state, and restores the address book to that state.
If the currentStatePointer is at index 0, pointing to the initial address book state, then there are no previous address book states to restore. The undo command uses Model#canUndoAddressBook() to check if this is the case. If so, it will return an error to the user rather than attempting to perform the undo.
|
The following sequence diagram shows how the undo operation works:
The redo
command does the opposite — it calls Model#redoAddressBook()
, which shifts the currentStatePointer
once to the right, pointing to the previously undone state, and restores the address book to that state.
If the currentStatePointer is at index addressBookStateList.size() - 1 , pointing to the latest address book state, then there are no undone address book states to restore. The redo command uses Model#canRedoAddressBook() to check if this is the case. If so, it will return an error to the user rather than attempting to perform the redo.
|
Step 5. The user then decides to execute the command list
. Commands that do not modify the address book, such as list
, will usually not call Model#commitAddressBook()
, Model#undoAddressBook()
or Model#redoAddressBook()
. Thus, the addressBookStateList
remains unchanged.
Step 6. The user executes clear
, which calls Model#commitAddressBook()
. Since the currentStatePointer
is not pointing at the end of the addressBookStateList
, all address book states after the currentStatePointer
will be purged. We designed it this way because it no longer makes sense to redo the add n/David …
command. This is the behavior that most modern desktop applications follow.
The following activity diagram summarizes what happens when a user executes a new command:
3.1.2. Design Considerations
Aspect: How undo & redo executes
-
Alternative 1 (current choice): Saves the entire address book.
-
Pros: Easy to implement.
-
Cons: May have performance issues in terms of memory usage.
-
-
Alternative 2: Individual command knows how to undo/redo by itself.
-
Pros: Will use less memory (e.g. for
delete
, just save the person being deleted). -
Cons: We must ensure that the implementation of each individual command are correct.
-
Aspect: Data structure to support the undo/redo commands
-
Alternative 1 (current choice): Use a list to store the history of address book states.
-
Pros: Easy for new Computer Science student undergraduates to understand, who are likely to be the new incoming developers of our project.
-
Cons: Logic is duplicated twice. For example, when a new command is executed, we must remember to update both
HistoryManager
andVersionedAddressBook
.
-
-
Alternative 2: Use
HistoryManager
for undo/redo-
Pros: We do not need to maintain a separate list, and just reuse what is already in the codebase.
-
Cons: Requires dealing with commands that have already been undone: We must remember to skip these commands. Violates Single Responsibility Principle and Separation of Concerns as
HistoryManager
now needs to do two different things.
-
3.2. UndoAll/RedoAll feature
3.2.1. Extension of Undo/Redo feature
Step 1. The user executes many add
, delete
, and clear
commands over a couple of hours, but decides at the end of the day that he does not want all the changes. He decides to undo all the changes by executing the undoAll
command. The 'undoAll' command will call 'Model#undoAllAddressBook(), which will shift the 'currentStatePointer' to the start of the addressBookStateList
, pointing it to the original address book state, and restores the address book to that state.
Step 2. The user decides again that he wants all the changes after all, and decides to execute the redoAll
command. Model#redoAllAddressBook()
is called, shifts the currentStatePointer to the end of addressBookStateList
, pointing to the furthest undone state, and restores the address book to that state.
3.3. [Proposed] Data Encryption
{Explain here how the data encryption feature will be implemented}
3.4. Logging
We are using java.util.logging
package for logging. The LogsCenter
class is used to manage the logging levels and logging destinations.
-
The logging level can be controlled using the
logLevel
setting in the configuration file (See Section 3.5, “Configuration”) -
The
Logger
for a class can be obtained usingLogsCenter.getLogger(Class)
which will log messages according to the specified logging level -
Currently log messages are output through:
Console
and to a.log
file.
Logging Levels
-
SEVERE
: Critical problem detected which may possibly cause the termination of the application -
WARNING
: Can continue, but with caution -
INFO
: Information showing the noteworthy actions by the App -
FINE
: Details that is not usually noteworthy but may be useful in debugging e.g. print the actual list instead of just its size
3.5. Configuration
Certain properties of the application can be controlled (e.g App name, logging level) through the configuration file (default: config.json
).
3.6. Member
-
As of V1.4, the commands related to the member component that are fully functional are: addmember, editmember, find, findmajor, findphone, findpostalcode and delete.
3.6.1. Add/Remove/Edit member feature
The add/remove mechanism is facilitated by VersionedAddressBook
. It extends AddressBook
model with an Addmember, Editmember and
Delete
method.
-
AddressBook#addPerson()
— Adds a member object to the UniquePersonList. -
AddressBook#removePerson()
— Removes a member object from the UniquePersonList.
These operations are exposed in the Model
interface as Model#addPerson
and Model#deletePerson
respectively.
Below is a scenario of how a user adds a member into Clubhub.
Step 1. The user inputs the command addmember n/NAME p/PHONE_NUMBER e/EMAIL a/ADDRESS c/POSTALCODE m/MAJOR [t/TAG] into the command box.
Step 2. The commandBox ui will then create a Logic object which parses the command to ascertain that it is an addmember command.
Step 3. The AddressBookParser will then parse the command to create a new addmemberParser object.
Step 4. This AddCommandParser will parse the arguments of the command line and create a new AddPerson object.
Step 5. This will then be put into the model, into the versioned address book.
The Member class creates an object that instantiates name, phone, email, postalcode, major, email and tag objects. These multiple member objects created will be stored in a UniquePersonList, where the uniqueness of every member depends on their names, phone number and email address. It will detect the entry as unique if it has different name or different phone number or email address.
This uniqueness check is obtained through the use of the object getName()
, getPhone()
and getEmail()
method in Person
Remove and edit member uses the similar concept and procedure but starts with looking for the Member in the UniquePersonList instead.
3.6.2. Find by name, major, phone and postalcode feature
Similarly to the add/remove/edit member features, is facilitated by VersionedAddressBook
. It then extends
AddressBook
model to find, findmajor, findphone and finddpostalcode methods.
These operations are exposed in the Model
interface as Model#updatePerson
.
Below is a scenario of how a user finds a member into Clubhub.
Step 1. The user inputs the command find [Valid Parameter] into the command box.
Step 2. The commandBox ui will then create a Logic object which parses the command to ascertain that it is an findmember command
Step 3. The AddressBookParser will then parse the command to create a new findmemberParser object.
Step 4. This findmemberParser will parse the arguments of the command line.
Step 5. By making use of the PersonContainsKeywordsPredicate, the members that has matching details would be found.
Step 5. This will then be put into the model, into the versioned address book.
3.7. Events
We create an Events package in model, to combine the event element such as name and venue into an event list. In the Commands package, we create an package named EventCommand, which the commands are stored in. We have totally four commands:
-
addEventsCommand
— Add a new event to the event list. -
editEvent
— Change the information of the existing event. -
listEvent
— List all the existing events. -
deleteEvent
— Delete the a certain event.
The AddEvent/DeleteEvent mechanism is facilitated by AddressBook
.
It extends AddressBook
with the AddEvent
and DeleteEvent
methods, and implements the following operations:
-
AddressBook#addEvent()
— Adds anEvent
object to theUniqueEventList
. -
AddressBook#deleteEvent()
— Removes anEvent
object from theUniqueEventList
.
These operations are exposed in the Model
interface as Model#addEvent()
and Model#removeEvent()
respectively.
Below is a scenario of how a user adds an Event
into the club book.
Step 1. The user inputs the command addEvent n/[eventName] v/[eventVenue] D/[eventDescription] d[eventDate] into the command box.
Step 2. The CommandBox
UI will create a Logic
object which parses the command to ascertain that it is an addEvent
command.
Step 3. The AddressBookParser
will then parse the command to create a new addEventParser
object.
Step 4. This addEventParser
will parse the arguments of the command line and create a new AddEvent
object.
Step 5. This will then be put into the model
, into the VersionedAddressBook
.
The Event
class creates an object that instantiates an EventName
object, an EventVenue
, an EventDescription
and an EventDate
objects. The multiple Event
objects created will be stored in a UniqueEventList
, where the uniqueness of every Event
is in its EventName
.
This uniqueness is attained by comparing the EventName
object in the Event
to be added and the Event’s already in the `UniqueEventList
using the getEventName()
method in Event
.
3.8. Ledger
As of v1.3, the core commands dealing with Ledgers are addLedger
, deleteLedger
,
credit
and debit
. In addition, the common commands such as undo
and redo
applies to manipulating the data in the Ledger.
Bugs:
1. Wrong exception thrown when not entering the correct value for balance fir credit and
debit
2. Balance in ledgers not displaying '$' symbol and 2 decimal places for cents at the front of the amount of money.
3.8.1. Add/Remove Ledger feature
Current Implementation
The add/remove mechanism is facilitated by VersionedAddressBook
. It extends AddressBook
with an AddLedger and RemoveLedger method.
-
AddressBook#addLedger()
— Adds a ledger object to the UniqueLedgerList. -
AddressBook#removeLedger()
— Removes a ledger object from the UniqueLedgerList.
These operations are exposed in the Model
interface as Model#addLedger
and Model#deleteLedger
respectively.
Below is a scenario of how a user adds a ledger into the club book.
Step 1. The user inputs the command addLedger /d [date]
/b [balance]
into the command box.
Step 2. The commandBox ui will then create a Logic object which parses the command to ascertain that it is an addLedger command.
Step 3. The AddressBookParser will then parse the command to create a new addLedgerParser object.
Step 4. This addLedgerParser will parser the arguments of the command line and create a new AddLedger object.
Step 5. This will then be put into the model, into the versioned address book.
The Ledger class creates an object that instantiates a DateLedger object and an Account object. The multiple Ledger objects created will be stored in a UniqueLedgerList, where the uniqueness of every ledger is in its date.
This uniqueness is attained by comparing the DateLedger object in the ledger to be added and the ledgers already in the
UniqueLedgerList using the getDateLedger()
method in Ledger.
Perhaps instead of using a for loop to loop through the entire UniqueLedgerList, one could implement a more efficient method of finding duplicates while maintaining the function of searching using objects instead of index.
Remove Ledger uses the same concept ut instead starts with looking for the Ledger in the UniqueLedgerList instead.
3.8.2. Credit/Debit feature
The Credit/Debit mechanism is facilitated by CreditCommand
and DebitCommand
.
They extend Command
by overriding and implementing the execute method.
The unique way of implementing this feature is that instead of crediting or debiting
the ledgers in the list using the index, we can directly perform these operations on the dates
themselves.
This is done by implementing a for
loop to loop through the UniqueLedgerList
to get the
date of the ledgers in the list, comparing them to find one to edit.
3.9. ItemList
3.9.1. Current Implementation
The AddItem/DeleteItem mechanism is facilitated by AddressBook
.
It extends AddressBook
with the AddItem
and DeleteItem
methods, and implements the following operations:
-
AddressBook#addItem()
— Adds anItem
object to theUniqueItemList
. -
AddressBook#deleteItem()
— Removes anItem
object from theUniqueItemList
.
These operations are exposed in the Model
interface as Model#addItem()
and Model#removeItem()
respectively.
Below is a scenario of how a user adds an Item
into the club book.
Step 1. The user inputs the command addItem /n[itemName] /q[itemQuantity] into the command box.
Step 2. The CommandBox
UI will create a Logic
object which parses the command to ascertain that it is an additem
command.
Step 3. The AddressBookParser
will then parse the command to create a new addItemParser
object.
Step 4. This addItemParser
will parse the arguments of the command line and create a new AddItem
object.
Step 5. This will then be put into the model
, into the VersionedAddressBook
.
The Item
class creates an object that instantiates an ItemName
object and an ItemQuantity
object. The multiple Item
objects created will be stored in a UniqueItemList
, where the uniqueness of every Item
is in its ItemName
.
This uniqueness is attained by comparing the ItemName
object in the Item
to be added and the Item`s already in the `UniqueItemList
using the getItemName()
method in Item
.
4. Documentation
We use asciidoc for writing documentation.
We chose asciidoc over Markdown because asciidoc, although a bit more complex than Markdown, provides more flexibility in formatting. |
4.1. Editing Documentation
See UsingGradle.adoc to learn how to render .adoc
files locally to preview the end result of your edits.
Alternatively, you can download the AsciiDoc plugin for IntelliJ, which allows you to preview the changes you have made to your .adoc
files in real-time.
4.2. Publishing Documentation
See UsingTravis.adoc to learn how to deploy GitHub Pages using Travis.
4.3. Converting Documentation to PDF format
We use Google Chrome for converting documentation to PDF format, as Chrome’s PDF engine preserves hyperlinks used in webpages.
Here are the steps to convert the project documentation files to PDF format.
-
Follow the instructions in UsingGradle.adoc to convert the AsciiDoc files in the
docs/
directory to HTML format. -
Go to your generated HTML files in the
build/docs
folder, right click on them and selectOpen with
→Google Chrome
. -
Within Chrome, click on the
Print
option in Chrome’s menu. -
Set the destination to
Save as PDF
, then clickSave
to save a copy of the file in PDF format. For best results, use the settings indicated in the screenshot below.
4.4. Site-wide Documentation Settings
The build.gradle
file specifies some project-specific asciidoc attributes which affects how all documentation files within this project are rendered.
Attributes left unset in the build.gradle file will use their default value, if any.
|
Attribute name | Description | Default value |
---|---|---|
|
The name of the website. If set, the name will be displayed near the top of the page. |
not set |
|
URL to the site’s repository on GitHub. Setting this will add a "View on GitHub" link in the navigation bar. |
not set |
|
Define this attribute if the project is an official SE-EDU project. This will render the SE-EDU navigation bar at the top of the page, and add some SE-EDU-specific navigation items. |
not set |
4.5. Per-file Documentation Settings
Each .adoc
file may also specify some file-specific asciidoc attributes which affects how the file is rendered.
Asciidoctor’s built-in attributes may be specified and used as well.
Attributes left unset in .adoc files will use their default value, if any.
|
Attribute name | Description | Default value |
---|---|---|
|
Site section that the document belongs to.
This will cause the associated item in the navigation bar to be highlighted.
One of: * Official SE-EDU projects only |
not set |
|
Set this attribute to remove the site navigation bar. |
not set |
4.6. Site Template
The files in docs/stylesheets
are the CSS stylesheets of the site.
You can modify them to change some properties of the site’s design.
The files in docs/templates
controls the rendering of .adoc
files into HTML5.
These template files are written in a mixture of Ruby and Slim.
Modifying the template files in |
5. Testing
5.1. Running Tests
There are three ways to run tests.
The most reliable way to run tests is the 3rd one. The first two methods might fail some GUI tests due to platform/resolution-specific idiosyncrasies. |
Method 1: Using IntelliJ JUnit test runner
-
To run all tests, right-click on the
src/test/java
folder and chooseRun 'All Tests'
-
To run a subset of tests, you can right-click on a test package, test class, or a test and choose
Run 'ABC'
Method 2: Using Gradle
-
Open a console and run the command
gradlew clean allTests
(Mac/Linux:./gradlew clean allTests
)
See UsingGradle.adoc for more info on how to run tests using Gradle. |
Method 3: Using Gradle (headless)
Thanks to the TestFX library we use, our GUI tests can be run in the headless mode. In the headless mode, GUI tests do not show up on the screen. That means the developer can do other things on the Computer while the tests are running.
To run tests in headless mode, open a console and run the command gradlew clean headless allTests
(Mac/Linux: ./gradlew clean headless allTests
)
5.2. Types of tests
We have two types of tests:
-
GUI Tests - These are tests involving the GUI. They include,
-
System Tests that test the entire App by simulating user actions on the GUI. These are in the
systemtests
package. -
Unit tests that test the individual components. These are in
seedu.address.ui
package.
-
-
Non-GUI Tests - These are tests not involving the GUI. They include,
-
Unit tests targeting the lowest level methods/classes.
e.g.seedu.address.commons.StringUtilTest
-
Integration tests that are checking the integration of multiple code units (those code units are assumed to be working).
e.g.seedu.address.storage.StorageManagerTest
-
Hybrids of unit and integration tests. These test are checking multiple code units as well as how the are connected together.
e.g.seedu.address.logic.LogicManagerTest
-
5.3. Troubleshooting Testing
Problem: HelpWindowTest
fails with a NullPointerException
.
-
Reason: One of its dependencies,
HelpWindow.html
insrc/main/resources/docs
is missing. -
Solution: Execute Gradle task
processResources
.
6. Dev Ops
6.1. Build Automation
See UsingGradle.adoc to learn how to use Gradle for build automation.
6.2. Continuous Integration
We use Travis CI and AppVeyor to perform Continuous Integration on our projects. See UsingTravis.adoc and UsingAppVeyor.adoc for more details.
6.3. Coverage Reporting
We use Coveralls to track the code coverage of our projects. See UsingCoveralls.adoc for more details.
6.4. Documentation Previews
When a pull request has changes to asciidoc files, you can use Netlify to see a preview of how the HTML version of those asciidoc files will look like when the pull request is merged. See UsingNetlify.adoc for more details.
6.5. Making a Release
Here are the steps to create a new release.
-
Update the version number in
MainApp.java
. -
Generate a JAR file using Gradle.
-
Tag the repo with the version number. e.g.
v0.1
-
Create a new release using GitHub and upload the JAR file you created.
6.6. Managing Dependencies
A project often depends on third-party libraries. For example, Address Book depends on the Jackson library for XML parsing. Managing these dependencies can be automated using Gradle. For example, Gradle can download the dependencies automatically, which is better than these alternatives.
a. Include those libraries in the repo (this bloats the repo size)
b. Require developers to download those libraries manually (this creates extra work for developers)
Appendix A: Suggested Programming Tasks to Get Started
Suggested path for new programmers:
-
First, add small local-impact (i.e. the impact of the change does not go beyond the component) enhancements to one component at a time. Some suggestions are given in Section A.1, “Improving each component”.
-
Next, add a feature that touches multiple components to learn how to implement an end-to-end feature across all components. Section A.2, “Creating a new command:
remark
” explains how to go about adding such a feature.
A.1. Improving each component
Each individual exercise in this section is component-based (i.e. you would not need to modify the other components to get it to work).
Logic
component
Scenario: You are in charge of logic
. During dog-fooding, your team realize that it is troublesome for the user to type the whole command in order to execute a command. Your team devise some strategies to help cut down the amount of typing necessary, and one of the suggestions was to implement aliases for the command words. Your job is to implement such aliases.
Do take a look at Section 2.3, “Logic component” before attempting to modify the Logic component.
|
-
Add a shorthand equivalent alias for each of the individual commands. For example, besides typing
clear
, the user can also typec
to remove all persons in the list.
Model
component
Scenario: You are in charge of model
. One day, the logic
-in-charge approaches you for help. He wants to implement a command such that the user is able to remove a particular tag from everyone in the address book, but the model API does not support such a functionality at the moment. Your job is to implement an API method, so that your teammate can use your API to implement his command.
Do take a look at Section 2.4, “Model component” before attempting to modify the Model component.
|
-
Add a
removeTag(Tag)
method. The specified tag will be removed from everyone in the address book.
Ui
component
Scenario: You are in charge of ui
. During a beta testing session, your team is observing how the users use your address book application. You realize that one of the users occasionally tries to delete non-existent tags from a contact, because the tags all look the same visually, and the user got confused. Another user made a typing mistake in his command, but did not realize he had done so because the error message wasn’t prominent enough. A third user keeps scrolling down the list, because he keeps forgetting the index of the last person in the list. Your job is to implement improvements to the UI to solve all these problems.
Do take a look at Section 2.2, “UI component” before attempting to modify the UI component.
|
-
Use different colors for different tags inside person cards. For example,
friends
tags can be all in brown, andcolleagues
tags can be all in yellow.Before
After
-
Modify
NewResultAvailableEvent
such thatResultDisplay
can show a different style on error (currently it shows the same regardless of errors).Before
After
-
Modify the
StatusBarFooter
to show the total number of people in the address book.Before
After
Storage
component
Scenario: You are in charge of storage
. For your next project milestone, your team plans to implement a new feature of saving the address book to the cloud. However, the current implementation of the application constantly saves the address book after the execution of each command, which is not ideal if the user is working on limited internet connection. Your team decided that the application should instead save the changes to a temporary local backup file first, and only upload to the cloud after the user closes the application. Your job is to implement a backup API for the address book storage.
Do take a look at Section 2.5, “Storage component” before attempting to modify the Storage component.
|
-
Add a new method
backupAddressBook(ReadOnlyAddressBook)
, so that the address book can be saved in a fixed temporary location.
A.2. Creating a new command: remark
By creating this command, you will get a chance to learn how to implement a feature end-to-end, touching all major components of the app.
Scenario: You are a software maintainer for addressbook
, as the former developer team has moved on to new projects. The current users of your application have a list of new feature requests that they hope the software will eventually have. The most popular request is to allow adding additional comments/notes about a particular contact, by providing a flexible remark
field for each contact, rather than relying on tags alone. After designing the specification for the remark
command, you are convinced that this feature is worth implementing. Your job is to implement the remark
command.
A.2.1. Description
Edits the remark for a person specified in the INDEX
.
Format: remark INDEX r/[REMARK]
Examples:
-
remark 1 r/Likes to drink coffee.
Edits the remark for the first person toLikes to drink coffee.
-
remark 1 r/
Removes the remark for the first person.
A.2.2. Step-by-step Instructions
[Step 1] Logic: Teach the app to accept 'remark' which does nothing
Let’s start by teaching the application how to parse a remark
command. We will add the logic of remark
later.
Main:
-
Add a
RemarkCommand
that extendsCommand
. Upon execution, it should just throw anException
. -
Modify
AddressBookParser
to accept aRemarkCommand
.
Tests:
-
Add
RemarkCommandTest
that tests thatexecute()
throws an Exception. -
Add new test method to
AddressBookParserTest
, which tests that typing "remark" returns an instance ofRemarkCommand
.
[Step 2] Logic: Teach the app to accept 'remark' arguments
Let’s teach the application to parse arguments that our remark
command will accept. E.g. 1 r/Likes to drink coffee.
Main:
-
Modify
RemarkCommand
to take in anIndex
andString
and print those two parameters as the error message. -
Add
RemarkCommandParser
that knows how to parse two arguments, one index and one with prefix 'r/'. -
Modify
AddressBookParser
to use the newly implementedRemarkCommandParser
.
Tests:
-
Modify
RemarkCommandTest
to test theRemarkCommand#equals()
method. -
Add
RemarkCommandParserTest
that tests different boundary values forRemarkCommandParser
. -
Modify
AddressBookParserTest
to test that the correct command is generated according to the user input.
[Step 3] Ui: Add a placeholder for remark in PersonCard
Let’s add a placeholder on all our PersonCard
s to display a remark for each person later.
Main:
-
Add a
Label
with any random text insidePersonListCard.fxml
. -
Add FXML annotation in
PersonCard
to tie the variable to the actual label.
Tests:
-
Modify
PersonCardHandle
so that future tests can read the contents of the remark label.
[Step 4] Model: Add Remark
class
We have to properly encapsulate the remark in our Person
class. Instead of just using a String
, let’s follow the conventional class structure that the codebase already uses by adding a Remark
class.
Main:
-
Add
Remark
to model component (you can copy fromAddress
, remove the regex and change the names accordingly). -
Modify
RemarkCommand
to now take in aRemark
instead of aString
.
Tests:
-
Add test for
Remark
, to test theRemark#equals()
method.
[Step 5] Model: Modify Person
to support a Remark
field
Now we have the Remark
class, we need to actually use it inside Person
.
Main:
-
Add
getRemark()
inPerson
. -
You may assume that the user will not be able to use the
add
andedit
commands to modify the remarks field (i.e. the person will be created without a remark). -
Modify
SampleDataUtil
to add remarks for the sample data (delete youraddressBook.xml
so that the application will load the sample data when you launch it.)
[Step 6] Storage: Add Remark
field to XmlAdaptedPerson
class
We now have Remark
s for Person
s, but they will be gone when we exit the application. Let’s modify XmlAdaptedPerson
to include a Remark
field so that it will be saved.
Main:
-
Add a new Xml field for
Remark
.
Tests:
-
Fix
invalidAndValidPersonAddressBook.xml
,typicalPersonsAddressBook.xml
,validAddressBook.xml
etc., such that the XML tests will not fail due to a missing<remark>
element.
[Step 6b] Test: Add withRemark() for PersonBuilder
Since Person
can now have a Remark
, we should add a helper method to PersonBuilder
, so that users are able to create remarks when building a Person
.
Tests:
-
Add a new method
withRemark()
forPersonBuilder
. This method will create a newRemark
for the person that it is currently building. -
Try and use the method on any sample
Person
inTypicalPersons
.
[Step 7] Ui: Connect Remark
field to PersonCard
Our remark label in PersonCard
is still a placeholder. Let’s bring it to life by binding it with the actual remark
field.
Main:
-
Modify
PersonCard
's constructor to bind theRemark
field to thePerson
's remark.
Tests:
-
Modify
GuiTestAssert#assertCardDisplaysPerson(…)
so that it will compare the now-functioning remark label.
[Step 8] Logic: Implement RemarkCommand#execute()
logic
We now have everything set up… but we still can’t modify the remarks. Let’s finish it up by adding in actual logic for our remark
command.
Main:
-
Replace the logic in
RemarkCommand#execute()
(that currently just throws anException
), with the actual logic to modify the remarks of a person.
Tests:
-
Update
RemarkCommandTest
to test that theexecute()
logic works.
A.2.3. Full Solution
See this PR for the step-by-step solution.
Appendix B: Product Scope
Target user profile:
-
has a need to manage a significant number of contacts
-
prefer desktop apps over other types
-
can type fast
-
prefers typing over mouse input
-
is reasonably comfortable using CLI apps
Value proposition: manage contacts faster than a typical mouse/GUI driven app
Appendix C: User Stories
Priorities: High (must have) - * * *
, Medium (nice to have) - * *
, Low (unlikely to have) - *
Priority | As a … | I want to … | So that I can… |
---|---|---|---|
|
new user |
see usage instructions |
refer to instructions when I forget how to use the App |
|
user |
add a new person |
|
|
user |
delete a person |
remove entries that I no longer need |
|
user |
find a person by name |
locate details of persons without having to go through the entire list |
|
user |
add an event |
|
|
user |
delete an event |
delete an event by indicating its name |
|
user |
modify an event |
modify an event by calling its name |
|
user |
add a new item |
|
|
user |
delete an item |
remove item entries that I no longer need |
|
user |
find an item by name |
locate details on items without having to go through the entire list |
|
user |
hide private contact details by default |
minimize chance of someone else seeing them by accident |
|
user with many persons in the address book |
sort persons by name |
locate a person easily |
{More to be added}
Appendix D: Use Cases
(For all use cases below, the System is the AddressBook
and the Actor is the user
, unless specified otherwise)
Use case: Delete person
MSS
-
User requests to list persons
-
AddressBook shows a list of persons
-
User requests to delete a specific person in the list
-
AddressBook deletes the person
Use case ends.
Extensions
-
2a. The list is empty.
Use case ends.
-
3a. The given index is invalid.
-
3a1. AddressBook shows an error message.
Use case resumes at step 2.
-
{More to be added}
Appendix E: Non Functional Requirements
-
Should work on any mainstream OS as long as it has Java
9
or higher installed. -
Should be able to hold up to 1000 persons without a noticeable sluggishness in performance for typical usage.
-
A user with above average typing speed for regular English text (i.e. not code, not system admin commands) should be able to accomplish most of the tasks faster using commands than using the mouse.
{More to be added}
Appendix G: Product Survey
KeepMaster
Author: Zayn, Junhyuk, Daryl and Allen
Pros:
-
…
-
…
Cons:
-
…
-
…
Appendix H: Instructions for Manual Testing
Given below are instructions to test the app manually.
These instructions only provide a starting point for testers to work on; testers are expected to do more exploratory testing. |
H.1. Launch and Shutdown
-
Initial launch
-
Download the jar file and copy into an empty folder
-
Double-click the jar file
Expected: Shows the GUI with a set of sample contacts. The window size may not be optimum.
-
-
Saving window preferences
-
Resize the window to an optimum size. Move the window to a different location. Close the window.
-
Re-launch the app by double-clicking the jar file.
Expected: The most recent window size and location is retained.
-
{ more test cases … }
H.2. Deleting a person
-
Deleting a person while all persons are listed
-
Prerequisites: List all persons using the
list
command. Multiple persons in the list. -
Test case:
delete 1
Expected: First contact is deleted from the list. Details of the deleted contact shown in the status message. Timestamp in the status bar is updated. -
Test case:
delete 0
Expected: No person is deleted. Error details shown in the status message. Status bar remains the same. -
Other incorrect delete commands to try:
delete
,delete x
(where x is larger than the list size) {give more}
Expected: Similar to previous.
-
{ more test cases … }
H.3. Saving data
-
Dealing with missing/corrupted data files
-
{explain how to simulate a missing/corrupted file and the expected behavior}
-
{ more test cases … }